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Abstract

A new procedure for automatic baseline correction of NMR data sets is presented. It is based on an improved automatic recognition
of signal-free regions that uses a Continuous Wavelet transform derivative calculation, followed by a baseline modelling procedure based
on the Whittaker smoother algorithm. The method has been proven to automatically flatten 1D and 2D NMR spectra with large baseline
distortions arising from different sources, is tolerant to low signal-to-noise ratio spectra, and to signals of varying widths in a single spec-
trum. Even though this procedure has so far only been applied to NMR spectra, we believe it to also be applicable to other spectroscopies
having relatively narrow peaks (e.g., mass spectrometry), and potentially to those with broad peaks (e.g., near infrared or ultraviolet).
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Baseline distortions can arise from a number of hard-
ware and processing sources and have long been a major
problem in FT NMR [1]. Distorted baselines in spectra
will result in incorrect integration values-information
which can be central to many NMR experiments, e.g.,
qNMR [2] and the accurate quantification of 2D
NOESY spectral cross-peaks. Multicomponent spectra
recorded in an LC NMR experiment or with biofluids
in the generation of metabonomics data also demand
high-quality spectra prior to statistical analysis [3,4]. In
addition, peak picking routines will also be adversely
affected by weak signals in spectra presenting significant
1090-7807/$ - see front matter � 2006 Elsevier Inc. All rights reserved.

doi:10.1016/j.jmr.2006.07.013

* Corresponding author. Fax: +34 981941079.
E-mail address: carlos@mestrec.com (J. Carlos Cobas).
baseline roll, and may not be recognized because the
baseline distortions can be significantly larger than the
peak intensities. This will be cause for concern with
low-concentration sample spectra.

The reasons for baseline distortions are diverse [5] and in
many cases they can be removed by adjusting acquisition
parameters or Backward Linear Prediction [6]. Modern
spectrometer hardware uses oversampling and digital signal
processing to improve the baseline [7], but some undesirable
broad signals arise from real sources (see below). Thus, a
more general solution would employ an efficient post pro-
cessing baseline correction in the frequency domain. In fact,
this is the most common approach found in NMR literature
[8–11]. We describe here a new procedure for automatic base-
line correction of frequency-domain NMR data sets which
we show to be highly effective on 1D and 2D spectral data-
sets, and preserves the range of component line widths that
are present in the sample.
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The algorithm consists of two independent processes:

1. Automatic baseline recognition (signal-free regions)
based on a Continuous Wavelet Derivative transform
(CWT) followed by iterative threshold detection in the
Power mode domain.

2. A baseline modelling procedure based on the Whittaker
smoother algorithm.

Overall, the algorithm has been designed to afford per-
fect baselines in NMR data sets spanning a wide range of
possible baseline topographies and signal-to-noise ratio
(SNR) conditions. In most cases, it can be applied success-
fully without any operator interaction, but further versatil-
ity is assured by two parameters that could be adjusted to
guarantee an optimum outcome. The procedure can there-
fore be ‘‘tuned’’ to achieve more accurate baseline recogni-
tion of signal-free regions, or to increase smoothness at the
expense of spectral fidelity, or vice versa.

1.1. Automatic baseline recognition

Baseline recognition of signal-free regions is performed
using an improved version of the Dietrich method [8]. In
short, Dietrich’s approach for automatic peak recognition
consists of calculation of the first numeric derivative of
the spectrum to eliminate baseline distortions, followed
by conversion to a power spectrum to generate absorptive
peaks. From this point, an iterative thresholding algorithm
is applied by first defining an initial threshold as the mean
plus three times the standard deviation using all the points
in the spectrum. Next, a new threshold is calculated in the
same manner but this time using only the spectral data
points below the first threshold. This iterative process is
repeated until no new points exceed the final threshold dur-
ing an iterative step.

The result of this stage is a binary mask wi which con-
tains ‘‘false’’ (or zero) values if a point belongs to real
peaks and ‘‘true’’ (or one) values otherwise (see [8]). As this
mask might contain undesired spikes, a 1D-erosion filter is
then applied. This examines each of the ‘‘true’’ points in the
mask; if the majority of its neighbors are ‘‘false’’ the point
is set to ‘‘false’’, causing the ‘‘true’’ region to shrink. This
binary mask will be used in the second stage of this algo-
rithm (baseline modelling) as the vector of weights which
the Whittaker smoother algorithm uses for interpolation.

The pivotal operation for the baseline recognition phase
is the numeric derivative calculation. Dietrich used a stan-
dard numeric derivative algorithm (where each spectral
data point is replaced by the difference between one point
and the next one). However, it is well known that this calcu-
lation has a major drawback in increasing the noise level. In
order to improve the SNR of the derivative calculation via
conventional numerical differentiation, noise reduction is
usually performed before calculating the derivative: Die-
trich used a moving average filter. This approach only per-
forms correctly when the SNR is good. In addition, peak
heights and widths are usually ‘washed out’ by adjacent
averaging making the algorithm ineffective in spectra
containing a combination of broad and sharp peaks. More
advanced smoothing routines such as the well-known Sav-
itzky–Golay [12] method has been commonly used, but sig-
nificantly increases the computational burden. This extra
computational effort would not be an issue with most rou-
tine 1D NMR spectra but can clearly be seriously limiting
in the case of 2D- or higher order multidimensional spectra.

In this work, we propose the utilization of a novel meth-
od for the derivative calculation based on the Continuous
Wavelet transform (CWT). It has been recently shown that,
compared to other methods (such as the conventional
numerical differentiation, the Fourier transform method
or the Savitzky–Golay method), the proposed CWT meth-
od is more efficient in improving the SNR of the derivatives
of noisy signals [13,14]. Furthermore, it is very fast and
simple to implement as it involves a simple convolution
in which both the smoothing and derivative calculations
are combined in one single step.

The CWT of a signal f(x) can be represented as follows:

Wf ða; bÞ ¼
Z þ1

�1
f ðxÞw�a;bðxÞdx; ð1Þ

where the asterisk represents the complex conjugate and
f(x) and wa, b(x) both have to belong to L2(R), being
L2(R) the Hilbert space of measurable square-integrable
one-dimensional functions, i.e., the space of signals of finite
energy, as is the case for NMR.

wa, b(x) can be obtained by dilations and translations of
a single function w(x) called the mother wavelet

wa;bðxÞ ¼
1ffiffiffi
a
p w

x� b
a

� �
; ð2Þ

where a 2 R, a > 0 is the parameter for dilation and b 2 R

is the parameter for translation (R denotes real number).
Substituting Eq. (2) into Eq. (1), we obtain

Wf ða; bÞ ¼ 1ffiffiffi
a
p

Z þ1

�1
f ðxÞw� x� b

a

� �
dx

¼ f ðbÞ � w�aðbÞ; ð3Þ

where � denotes the convolution of both functions.
The mother wavelet can be obtained as dn/dxnh(x),

where h(x) is a smoothing function. If the smoothing func-
tion is symmetric with regard to a point x = p, the position
of the maximum peak lies in x = p and its derivatives are
indefinitely derivable, being the result of this convolution
the derivative of f(x) as it has been demonstrated by Nie
et al. [14]. Examples of smoothing functions that have
those properties are, among others, the Haar function or
the Gaussian function.

When computers are employed for computation, the sig-
nal to be analyzed is discrete. This make necessary to use
the discrete form of Eq. (3)

CWT f ða; iT sÞ½ � ¼ T s
1ffiffiffi
a
p

X
n

f ðnT sÞW�
ðn� iÞT s

a

� �
; ð4Þ
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where the asterisk represents the complex conjugate, a is a
variable used to control the dilation called scale parameter,
i and n are indexes of the data point of f(nTs), Ts corre-
sponds to the sampling interval, and W(t) is defined by
the mother wavelet function. We have selected the first
and second derivative of a Gaussian and Haar function.
In practice, we have not found major differences between
these functions, so in order to simplify our study, we have
selected a wavelet Haar function to compute the deriva-
tives. This function is defined as follows:

WðtÞ ¼
1 0 6 t < 1

2
;

�1 1
2
6 t < 1;

0 otherwise:

8><
>:

The CWT only affords approximate derivatives, which are
modulated by parameter a, which is the first adjustable
parameter of our algorithm. Increasing a reduces noise
and therefore improves SNR (Fig. 1a) but with a broaden-
ing of the signals (Fig. 1b).

The optimum values of the scale factor for different
SNR values have been determined in Ref. [14]. In practice,
we have found that the scaling factor may be calculated as
a proportional function of the broadest signal in the spec-
trum. If the scaling factor is set too small, broad peaks will
be considered as a baseline distortion rather than a real
peak, and removed.

1.2. Baseline modelling

The next step in the algorithm is the building of a base-
line model from the previously-detected baseline points. An
ideal baseline model should match the baseline distortion
(fidelity) whilst being smooth. Different models have been
used in the past, such as polynomial functions [15], cubic
splines [16], Bernstein polynomials [9] or linear segments
[9]. Obviously, the simplest method is the linear segments
model, but by definition this is not a smooth function.
Fig. 1. The influence of dilation, a, on the SNR (a) and line width (b) of the
peaks heights were calculated from the imaginary part of the CWT-derivative
Polynomial functions are smooth but, in theory, NMR
baseline distortions do not match the shape of a polynomi-
al and, in particular, high order polynomials tend to oscil-
late (Runge’s phenomenon). This problem can be
circumvented by using spline curves, which are piecewise
polynomials. However the spline is forced through the
detected baseline points so that, for spectra with a low
SNR, the fit can be poor and severely distorted. To circum-
vent all these problems, in this paper, we propose use of the
so-called Whittaker smoother algorithm (WS).

WS was introduced more than 80 years ago [17] and
recently revisited by Eilers [18]. This algorithm attempts a
balanced combination of the two conflicting goals previ-
ously mentioned: (1) Fidelity to the data (i.e., the function
may stay close enough to the spectral baseline) and (2)
smoothness.

Fidelity to the data can be expressed as:

S ¼
X

i

ðyi � ziÞ2; ð5Þ

where zi is the desired smoothed vector and yi is the origi-
nal raw spectrum.

Smoothness can be expressed, to a first order smoother,
by the squared differences between neighbors:

R ¼
X

i

ðzi � zi�1Þ2 ¼
X

i

ðDziÞ2: ð6Þ

A balanced combination of the two goals is the sum

Q ¼ S þ kR; ð7Þ
where k is a user-defined parameter. Thus, we have a stan-
dard sum of squares problem with penalization, where the
goal is to find the series zi which minimizes Q. Large values
of k will make the R term higher as the smoother effect will
be larger, but at the cost of a deterioration of the fit to the
data (which is the penalization concept).

From partial derivatives oQ
ozi
¼ 0 we get a linear system of

equations which can be easily solved:
approximate first derivative evaluated by CWT method. Line widths and
spectrum.



148 Communication / Journal of Magnetic Resonance 183 (2006) 145–151
z ¼ ðI þ kDtDÞ=y; ð8Þ
where D is the derivative of the identity matrix I. For
example, if the number of points in the spectrum is 4, then
D would be

D ¼
1 �1 0 0

0 1 �1 0

0 0 1 �1

2
64

3
75 :

At this point we can introduce the binary mask calculated
in the first stage which we use as a vector of weights wi so
that at the positions where wi (and hence yi) is zero (i.e.,
peaks positions), z is automatically and smoothly interpo-
lated. The vector of weights is therefore introduced in the
fidelity term:

S ¼
X

i

wiðyi � ziÞ2: ð9Þ

So that the system of equations changes to:

ðW þ kDtDÞz ¼ Wy: ð10Þ
This is a linear system of equations which can be efficiently
solved by using sparse coding. Computation times for stan-
dard 1D spectra (e.g., 32 Kb) takes less than 1 s using up-
to-date personal computers.

In Eq. (10), k represents the second adjustable parame-
ter in our algorithm.
2. Results

To evaluate the performance of the algorithm, we have
selected spectra having baseline distortions caused by dif-
ferent means.

In Fig. 2a, we show a 13C spectrum with a severe base-
line rolling due to improper adjustment of the pre-acquisi-
tion delay. This experimental baseline distortion was
artificially exacerbated by altering the very first points in
Fig. 2. 1H-decoupled 13C spectrum of strychnine in CDCl3 acquired on a Vari
The FID was processed with an exponential function (line broadening = 1 H
proposed algorithm (k = 1000, a = 50).
the FID. The application of our algorithm (baseline correc-
tion parameters were k = 1000, a = 50) allows us to obtain
a spectrum with a flat baseline (Fig. 2b). Note in Fig. 2a
that the baseline model (light curve) matches the baseline
shape perfectly. In all these examples the vertical scale
has been greatly expanded so the baseline quality is clear.

The 13C spectrum in Fig. 3a is of a dilute quinine solu-
tion, recorded on a modern Cryo-Probe. This represents
the ‘‘real world’’ use of this very sensitive hardware. With
simple FT, the baseline is severely distorted, and extracting
chemical shift values is difficult in spite of the very ade-
quate SNR. We commonly observe these baseline distor-
tions, and can partially compensate using backward
linear prediction of up to 256 data points. But this ap-
proach is undesirable if SNR is limiting, and a general solu-
tion that corrects the baseline would be of more general
utility. The spectrum in Fig. 3c shows the same data after
application of our baseline correction algorithm: it is clear
that the baseline modelling is excellent (Fig. 3b).

In Fig. 4a a 1H spectrum presenting a broad peak (at
low field) in the presence of sharp signals is used to assess
the efficiency of the algorithm under these conditions. If the
value of a was set too small, we would risk identifying the
broad signal as part of the baseline, and as a consequence
this broad signal could disappear after carrying out the
baseline correction. Fig. 3a, the value a = 80 was em-
ployed, leading to the wide signal being identified correctly,
and therefore, preserved in the resulting spectrum (Fig. 4b).

19F NMR spectra are typically recorded with large spec-
tral windows at high frequency, and present a number of
technical challenges (see above). A further difficulty lies
in contamination of the spectrum with broad signals de-
rived from materials used in the probe construction. An
example of a 19F NMR spectrum showing a poor baseline
and broad, contaminating peaks is depicted in Fig. 5a.
Application of our algorithm (baseline correction parame-
ters: k = 50000, a = 80) allows us to obtain a perfectly flat
an Inity Inova 400 NMR spectrometer using a sweep width of 25,157 Hz.
z) and a FT of 64 Kb (a) and corrected spectrum (b) after applying the



Fig. 3. 1H-decoupled 13C spectrum of quinine in DMSO-d6 (1.0 mg/0.13 mL) acquired using a Bruker DRX 600 MHz NMR spectrometer fitted with a
3 mm Cryo-Probe. The sweep width was 35,971 Hz. The FID was processed with an exponential function (line broadening = 1 Hz) and a FT of 64 kb (a)
and corrected spectrum (c) after applying the proposed algorithm (k = 10,000, a = 200). Note that the baseline model (b) is excellent.

Fig. 4. 1H NMR spectrum of a typical chemist’s qNMR sample in DMSO-d6, containing mesaconic acid as an internal standard. The 500 MHz spectrum
was recorded on a Varian UnityInova 500 using a sweep width of 9612 Hz. Processing used an exponential line broadening of 0.3 Hz and FT with 32 kb.
(k = 10,000, a = 80).

Fig. 5. 19F NMR spectrum of an impure chemist’s sample containing a 2,6-disubstituted aromatic ring recorded on a Varian UnityInova 400 NMR
spectrometer using a sweep-width of 39,604 Hz. The spectrum shows a bad, rolling baseline and broad, contaminating peaks (a) and the corrected
spectrum (b) after baseline correction (k = 50,000, a = 80).
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Fig. 6. 2D WET-g-COSY spectrum of a sample of human obestatine (a) Spectral dimensions after double FT are 2048 · 2048 (see text for more details)
and (b) resulting baseline corrected spectrum (k = 100, a = 2).
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baseline (Fig. 5b). Note that the broad peak at high-field
end (probably an impurity) is maintained in the corrected
spectrum. By simply decreasing parameter a, this peak
can be selectively removed if required.

The computational performance of this algorithm is well
represented by its application to the correction of 2D NMR
data sets. Fig. 6 exemplifies the higher quality that can be
achieved with 2D data sets by the use of the new base-line
correction algorithm. In both spectra of Fig. 6 the data
set is the same 2D WET-g-COSY spectrum of a sample of
human obestatine, a 23 amino acids peptide, dissolved in
H2O/D2O 90:10 and PBS buffer. The WET module provides
a high degree of solvent suppression of the strong water res-
onance. Besides, pulse-field-gradients are used to select only
one of the two possible echo/antiecho coherence pathways
during the evolution of the t1 dimension, which results in
a COSY magnitude spectrum. The spectrum was acquired
with 2048 · 256 data points. The spectrum was processed
with a high-pass filter along the t2 dimension to suppress
the residual solvent signal. A sinebell apodization function
was applied in both dimensions to give, after double FT, a
final matrix of 2048 · 2048 real points which was represent-
ed in the magnitude mode. The two spectra of Fig. 6 corre-
spond to the same data set processed in this way. The only
difference is that the spectrum of Fig. 6 right was subse-
quently treated with the new base-line correction along all
rows and columns, a process that took ca. 2.3 s in a Pentium
IV computer running at 1.6 GHz under Windows XP.

While the two spectra of Fig. 6 are represented at the
same contour level and provide eventually the same inten-
sity for all the cross-peaks, the spectrum of Fig. 6 right
shows an evident reduction of t1-noise occurring at
�1.3 ppm, and the suppression of the artefacts caused by
the residual solvent signal at �4.7 ppm along the F2
dimension that were not completely removed by the high-
pass filter. Clearly, the use of our new base-line correction
algorithm in the spectrum of Fig. 6 right enhances the pos-
sibilities for the detection of small cross peaks close to the
t1-noise or to the residual solvent line.

3. Conclusions

While spectrometer electronics and probe construction
will continue to work towards high-quality, sensitive spec-
tra, baseline distortions still are common in NMR spectra.
These are a nuisance at the least, but in many cases the dis-
tortions must be eliminated for the data to be useful. Exist-
ing approaches have limitations in their effectiveness and
universal application. We have shown that the CWT algo-
rithm in combination with the penalized least squares
(Whittaker) effectively describes baseline regions of a spec-
trum without loss in SNR or smoothing artifacts.

Together this affords an efficient process for eliminating
undesirable baseline effects which we have demonstrated
here for a sample of 1D and a 2D spectrum. A further com-
munication will elaborate on this utility and the degree to
which ‘‘default’’ parameters can be used for unsupervised
processing. In more demanding situations these parameters
can be modified to best afford the desired effect. We believe
that the approach to baseline correction described here is
well suited to a number of NMR spectral conditions, but
will also find utility in light- and vibrational spectroscopies.
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[15] P. Güntert, K. Wüthrich, FLATT—a new procedure for high-quality
baseline correction of multidimensional NMR spectra, J. Magn.
Reson. 96 (1991) 403–407.

[16] Z. Zolnai, S. Macura, J.L. Markley, Spline method for correcting
baseplane distortions in two-dimensional NMR spectra, J. Magn.
Reson. 82 (1989) 496–504.

[17] E.T. Whittaker, On new method of graduation, Proc. Edinburgh
Math. Soc. 41 (1923) 63–75.

[18] P.H. Eilers, A perfect smoother, Anal. Chem. 75 (2003) 3631–3636.


	A new general-purpose fully automatic baseline-correction procedure for 1D and 2D NMR data
	Introduction
	Automatic baseline recognition
	Baseline modelling

	Results
	Conclusions
	Acknowledgment
	References


